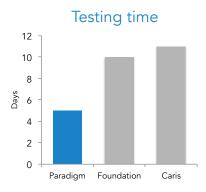
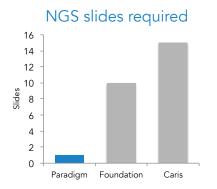
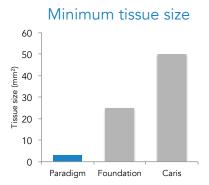
Paradigm Cancer Diagnostic (PCDx) Right options. Right now.




refuse to wait


Every day matters. PCDx is the fastest test available, providing results in 5 days. The PCDx test is designed for smaller batch sizes. This means your specimen is run right away rather than waiting for a large batch of samples to accumulate. Each step in our process is optimized for speed. For example, PCDx uses the Illumina NextSeq, which generates results in 25 hours compared to 3.5 days for a HighSeq.

useful answers

We screen for an industry-leading >90 drugs and make your options clear in a simple report tailored to the clinic. Our test is validated on the actual FFPE diagnostic blocks from the tumors characterized by TCGA. If you are a researcher who wants to dig deeper into your patients' results, we provide unprecedented access to literature, data and registry funding.

Source: https://www.foundationmedicine.com/genomic-testing/foundation-one-cdx, https://www.carismolecularintelligence.com accessed 9/22/18

get results

We believe it is our job to get you results, not your responsibility to provide perfect specimens. PCDx is one of the most sensitive tests available, and we can make almost any specimen work including a single slide. We accomplish this with a proprietary library technique that converts five fold more DNA strands than other methods

when 1.5 ng DNA is available. We use duplex UMI "barcodes" on each strand of DNA, a technique recently developed for low-yield cfDNA samples. Our proprietary informatics leverage the power of UMIs to detect variants with fewer DNA strands. When combined with more effective conversion of DNA, we need much less tissue.

About PCDx

PCDx is a comprehensive genomic profiling test designed to analyze solid tumor alterations to match the best therapies and clinical trials based on the latest clinical evidence in peer-reviewed literature.

Paradigm is able to accept most U.S. insurance plans, including Medicare. 43% of patients receiving therapy as directed by PCDx achieved a progression-free survival ratio of 1.3 compared to only 5% of patients treated by physician directed therapy¹.

¹Oncotarget, 7(35), 56491-56500.

Indications

PCDx is indicated when a patient has:

- a. a solid neoplasm; and
- b. recurrent, relapsed, refractory, metastatic or advanced (stage III/IV) cancer; and
- c. has not been tested by PCDx for the same cancer; and d. has decided to seek further treatment

Rejection criteria

A specimen will be rejected when it:

- a. contains less than 15% tumor cells after dissection; or
- b. is smaller than a grain of rice (3mm²) in size; or
- c. has been decalcified (exception: EDTA); or
- d. the specimen is not FFPE

Turnaround time 5 business days

Sensitivity ≥99%

Specificity >99%

Drug associations >90 therapies

Paradigm Cancer Diagnostic (PCDx) Right options. Right now.

Accuracy

Biomarker	Sensitivity	Specificit
SNVs, indels ≥7.5%	>99%	>99%
SNVs, indels ≥5.0%	>97%	>99%
Amplifications	>90%	>99%
· IHC	>94%	>94%

Validation samples:

The original FFPE diagnostic specimens from tumors characterized by TCGA and FFPE cell line mixtures verified by a third party.

TMB cut-off is 10 mutations/MB

Associated Therapies									
Abemaciclib Abiraterone Ado- trastuzumab emtansine Afatinib Alectinib	Carboplatin Carmustine Ceritinib Cetuximab Cisplatin Crizotinib Dabrafenib	Enzalutamide Epirubicin Eribulin Erlotinib Everolimus Exemestane Fluorouracil	Ketoconazole Lapatinib Lenvatinib Letrozole Liposomal Doxorubicin Lorlatinib	Olaparib Olaratumab Osimertinib Oxaliplatin Paclitaxel Palbociclib Panitumumab	Sorafenib Streptozocin Sunitinib Talazoparib Tamoxifen Temozolomide Temsirolimus				
Anastrozole Atezolizumab Avelumab Bevacizumab Bicalutamide Binimetinib Brigatinib Cabozantinib Capecitabine	Dacarbazine Dacomitinib Dasatinib Diethylstilbestrol Dinutuximab Docetaxel Doxorubicin Durvalumab Encorafenib	Flutamide Fulvestrant Gefitinib Gemcitabine Idelalisib Imatinib Interleukin-2 Ipilimumab Irinotecan	Medroxy- progesterone Megestrol Mitomycin Neratinib Nilotinib Nintedanib Niraparib Nivolumab	Pazopanib Pembrolizumak Pemetrexed Pertuzumab Procarbazine Regorafenib Ribociclib Rucaparib Sonidegib	Topotecan oToremifene Trametinib Trastuzumab Vandetanib Vemurafenib Vincristine Vismodegib Zoledronic acid				

Specimen requirements

Preferred method

- 1. Verify tissue is as large as a grain of rice (3mm²)
 - (actual size)
- 2. Send whole block

Alternate method

- 1. Measure tissue (length x width) in mm area = $\underbrace{\text{Width}}_{\text{Width}} X \underbrace{\text{Length}}_{\text{Length}} = \underbrace{\text{mm}^2}_{\text{midth}}$
- 2. If < 25mm², send whole block
- 3. If ≥ 25 mm², send 4 μ m-5 μ m slides

Immuno

TMB ~ 1Mb

PD-L1 tumor

MMR

Legacy mRNA panel									
AR AREG ARID1A BAD BAX BCL2 BIRC5 BRCA1 CA9 CDA CDH1 CES2 CHUK	DCK DHFR DPYD EPHA2 ERBB2 ERBB3 ERCC1 EREG ESR1 EZH2 FGFR1 IGF1R KDR	KIT LRP6 MET MGMT MITF MTOR NFKB1 PARP1 PDGFRB PGR PTEN PTGS2 PTPN6	RELA RPS6KB1 RRM1 SLC29A1 SSTR2 TNFSF13 TOP2A TUBB3 TYMP TYMS VEGFA						

Immunohistochemistry

ALK	IDO	PD1	ROS1
AR	MET	PD-L1	TOPO1
CAIX	MGMT	PMS2	TP
ER	MLH1	PR	TRKpan
hENT1	MSH2	PTEN	TS
HER2/neu	MSH6	RET	TUBB3

PCDx IHC Panels

Breast AR, PD-L1, TP, TOPO1, MMR, TRKpan

Colorectal MMR, PD-L1, TRKpan, HER2

NSCLC PD-L1, ALK, ROS1, hENT1, TRKpan, MMR Other hENT1, HER2, MMR, PD-L1, TRKpan MMR includes MLH1, MSH2, MSH6 and PMS2

-		panel

	ABCB1	APC	B2M	CCNE1	CSF1R	EPCAM	FANCA	FGFR3	HNF1A	KRAS	MRE11A	NOTCH3	PIK3R1	RBM10	SMAD4	TSC1
ı	ABCC1	APLNR	BAP1	CD274	CTLA4	EPHA5	FANCC	FGFR4	HRAS	MAF	MSH2	NPM1	PLCB4	RECQL	SMARCA4	TSC2
	ABCC2	AR	BARD1	CDA	CTNNB1	EPHA7	FANCD2	FLT3	HSD3B1	MAP2K1	MSH6	NRAS	PLCG1	RET	SMARCB1	TSHR
ı	ABL1	ARAF	BCOR	CDC73	CYP19A1	ERBB2	FANCE	FLT4	IDH1	MAP2K2	MTHFR	NTRK1	PMS2	RHEB	SMO	TYMS
	ADAMTS1	AREG	BNIP3	CDH1	CYP1A1	ERBB3	FANCF	FOXL2	IDH2	MAP3K1	MTOR	NTRK2	POLD1	RICTOR	SOCS1	VEGFA
	ADAMTS16	ARID1A	BRAF	CDK12	CYP2D6	ERBB4	FANCG	FUBP1	IGF1R	MAPK1	MUTYH	NTRK3	POLE	RIT1	SPOP	VHL
	ADAMTS18	ARID1B	BRCA1	CDK4	CYP3A4	ERCC1	FANCM	GATA3	IKZF1	MAPK3	MYC	PALB2	PPP2R1A	RNF43	STAG2	WT1
	ADAMTS6	ARID2	BRCA2	CDK6	CYSLTR2	ERCC2	FAT1	GLI1	JAK1	MAPKAPK5	MYCN	PBRM1	PTCH1	ROS1	STAT3	XRCC1
	ADAMTS9	ATM	BRIP1	CDKN2A	DCK	ERCC3	FBXW7	GNA11	JAK2	MDM2	MYOD1	PDCD1LG2	PTEN	RPTOR	STK11	YES1
ı	ADAMTSL1	ATR	BTK	CHEK1	DDR2	ERRFI1	FCGR2A	GNAQ	JAK3	MDM4	NBN	PDGFRA	PTPN11	RRM1	SUFU	
ı	AKT1	ATRX	BUB1B	CHEK2	DICER1	ESR1	FGD4	GNAS	KDM5C	MED12	NF1	PDGFRB	RAD50	SDHB	TERT-p	
	AKT2	AURKA	CBL	CHFR	DNMT3A	ESR2	FGF3	GSTP1	KDM6A	MEN1	NF2	PIK3CA	RAD51C	SDHC	TGFBR2	
	AKT3	AURKB	CCND1	CHKA	EGFR	EWSR1	FGF4	GSTT1	KDR	MET	NFE2L2	PIK3CB	RAD51D	SETD2	TNFAIP3	
	ALK	AXIN1	CCND2	CIC	EMSY	EZH2	FGFR1	HDAC2	KEAP1	MGMT	NOTCH1	PIK3CD	RAF1	SF3B1	TOP2A	
1	AMER1	AXL	CCND3	CREBBP	EP300	FAM175A	FGFR2	HGF	KIT	MLH1	NOTCH2	PIK3CG	RB1	SMAD2	TP53	
ш																

Genetic structures tested: single nucleotide variants (SNVs) and insertions/deletions up to 40bp in coding regions of genes listed above. UTRs and splice junctions when actionable (e.g., MET exon 14 skipping). Mutation burden (SNVs, insertions, deletions) based on ~1 megabase.