

Final Report Date 1/15/2020

Breast Cancer - Invasive

Paradigm Cancer Diagnostic (PCDx)					
Date of Birth:	00/00/0000	Case/Specimen ID:	AA00-00000 A0	Turnaround:	3 business days
PCDx Case#:	PCDx-19-00000	Collection Site:	Lymph node	Tumor cells:	90%
Physician:	Dr. Smith	Collection Date:	00/00/0000	Specimen size:	180 mm ²
Facility:	Some Cancer Treatment Center	Received for testing:	00/00/0000	Requirement met:	Optimal

11 NCCN indications						
Therapeutic Option	Indicating biomarkers	Therapeutic Option	Indicating biomarkers			
Abemaciclib	HR + and HER2 -	Alpelisib + Fulvestrant	PIK3CA mutation, HR+, HER2 -			
Anastrozole	ER + PR +	Eribulin	HER2 -			
Exemestane	ER +	Fulvestrant	ER +			
Megestrol	PR +	Palbociclib	HR + and HER2 -			
Ribociclib	HR + and HER2 -	Tamoxifen	ER + PR +			
Toremifene	ER + PR +					

High Interest				
Pan cancer	Type specific			
TMB: Low (2muts/mb)	ERBB2 CNV: Not Changed			
MSI: Stable	ESR1 mutation: Wildtype			
BRCA1: Wildtype	PIK3CA mutation: H1047R			
BRCA2: Wildtype				
TRKpan: Negative				
PD-L1 (22C3) Tumor: Negative				
PD-L1 (22C3) TILs: Negative				

11 evidence-based therapy associations

Abiraterone	Bicalutamide	Capecitabine
Enzalutamide	Everolimus	Flutamide
Irinotecan	Letrozole	Medroxyprogesterone
Sorafenib	Topotecan	

For additional information or to set up an interactive online account please contact your sales representative or call 1-844-232-4719.

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719 Laboratory Director: Bradly Clark, MD

Final Report Date 1/15/2020

Breast Cancer - Invasive

Specin	6 IHCs			
		AR	3+ 100%	Positive
		CAIX	2+ 30%	Positive
		PD-L1 (22C3) TILs	N/A 0%	Negative
		PD-L1 (22C3) Tumor	N/A 0%	Negative
Caracteristic and		TOPO1	3+ 100%	Positive
and the second	Tumor colls: 90%	TP	2+ 100%	Positive
	Specimen size: 180 mm ² Residual tissue: No	TRKpan	N/A 0%	Negative

Metastatic carcinoma

Gross Description: Xxxxxxx xxxx Xxtxxxxx- Xxtxxxx Xxxxxx Xxxtxx xx 0 Xxxxx xxxxxx xx X00-0000 0X (xxx XXXx-00-00000) xxxx tx xxxx xxx Xxxxxxx X&X xxxxx xxxxxxx xx X00-0000 0X (xxx XXXx-00-00000) xxxxtxxxxx xx xxxxxxxx tx xxxxxxx xxxxxxxx xxx xx 0/00/0000. Xxxxx X00-0000 0X xxxx xx xxxxxxxx.

Pathologist has performed a comprehensive review of all records and material submitted. (2020-01-10)

5 salient genomic findings					
Gene	Variant	Quantity	Gene	Variant	Quantity
ARID1A	Q1212*	5%	PIK3CA	H1047R	46%
ARID1A	c.4102-483_4102-473del p.?	38%	VEGFA	Amplification	2.55x
MDM4	Amplification	2.24x			

3 external results					
Biomarker	Туре	Value			
ER	IHC	Pos			
PR	IHC	Pos			
HER2	IHC	Neg			

The breast cancer predictive marker (ER, PR, HER2) interpretations in this PCDx report are provided courtesy of an extramural anatomic pathology report and/ or provided by the clinical team completing the Paradigm tumor analysis requisition/request. The predictive marker data is passed through onto this report and did not arise from ER, PR, HER2 tumor assay performed by Paradigm.

26 other genomic findings

Note: this table contains all non-reference alleles found in less than 1% of the population. These may be germline or somatic.

XXXXTX00 x.0000-0X>X XXXX0 X0000T XXXXX0 X0000X XXX x.0000-0000X>T XXX0XX X000X XXXXTX00 X0000 XXX00 Xxxx

XXXXX X0000X XXX0X0 X0000T XXX00X x.000+0000X>X XXX X0000 XXXXXX X0000 XXXXX X0000X

1-844-232-4719

XXXX0 X000 XXX0 Xxxx XXXX0X Xxxx XTXX0 x.0000-00000X>X XTXX X000X XX000 X000X

XXT TOOOX XXXX Xxxx XX X000X XXX0X0 T00 XXT0 X000 XTXX x.0000+00X>X XXX0 Xxxx

Page 2 of 13

XXX0 X00 XXXX0 X0000X XXX TOOOX XXX0 X000 XXXX0 X00 XXXXXX X00

22 therapies with potential increased benefit					
Therapeutic O	ption	Biomarkers	On NCCN	Level of evidence	References
Abemaciclib		HR + and HER2 -	Yes	I	35,9
Paradigm	Final Report	445 N 5th St., Phoenix, AZ 85004	Laboratory Director:	CLIA# 03D2082339	Continued

Bradly Clark, MD

Final Report Date 1/15/2020

Breast Cancer - Invasive

	22 therapies with potentia	al increased be	nefit	
Therapeutic Option	Biomarkers	On NCCN	Level of evidence	References
Abiraterone	AR +		DTT	11
Alpelisib + Fulvestrant	PIK3CA mutation, HR+, HER2 -	Yes	I	42,24
Anastrozole	ER +	Yes		10,23
	PR +	Yes	II-1	31,5
Bicalutamide	AR +		II-3	18
Capecitabine	TP +		II-3	25
Enzalutamide	AR +		DTT	12
Eribulin	HER2 -	Yes	II-3	15,38
Everolimus	PIK3CA mutation, HR+		DTT	27
Exemestane	ER +	Yes	I	1,14
Flutamide	AR +		DTT	13
Fulvestrant	ER +	Yes	II-1	8,39
Irinotecan	TOPO1 +		DTT	30,32
Letrozole	PIK3CA mutation, HR + and HER2 -		I	44
Medroxyprogesterone	AR +		II-3	3,43
Megestrol	PR +	Yes	I	4,17
Palbociclib	HR + and HER2 -	Yes	I	37
Ribociclib	HR + and HER2 -	Yes	I	21
Sorafenib	VEGFA Amplification		DTT	22
Tamoxifen	ER +	Yes	II-1	6,40
	PR +	Yes	II-1	6,40
Topotecan	TOPO1 +		DTT	28
Toremifene	ER +	Yes		41,29
	PR +	Yes	I	41,29

6 therapies with potential reduced benefit					
Therapeutic Option	Contraindicating biomarkers	References			
Bevacizumab	CAIX +	20,33			
Cetuximab	PIK3CA mutation	7,36			
Doxorubicin	CAIX +	2			
Epirubicin	CAIX +	16			
Fluorouracil	CAIX +	19,26			
Panitumumab	PIK3CA mutation	7,34			

clinical notes

The breast cancer predictive marker (ER, PR, HER2) interpretations in this PCDx report are provided courtesy of an extramural anatomic pathology report and/or provided by the clinical team completing the Paradigm tumor analysis requisition/request. The predictive marker data is passed through onto this report and did not arise from ER, PR, HER2 tumor assay performed by Paradigm.

AR positivity in Breast cancer; Current understanding of AR expression and AR signaling suggest potential for novel therapeutic targets for breast cancer. Clinical studies are underway, investigating the feasibility of antiandrogen therapy in the treatment of AR+, advanced or metastatic breast carcinoma. Preclinical data suggest complementary effects between enzalutamide and endocrine therapies in estrogen receptor–positive breast cancer xenografts. A phase I/Ib study of enzalutamide alone and in combination with endocrine therapies showed a clinical benefit rate at 24 weeks of 7% and 9% in the enzalutamide monotherapy and combination ET cohorts, respectively. One AR+ patient who received enzalutamide combined with exemestane followed by exemestane experienced stable disease for more than 3 years. As regards the cited evidence for bicalutamide - the referenced study is primarily based on a patient cohort of AR+ HR- breast cancer patients. However, one patient in the published cohort was shown to have weak ER expression measuring 3% and prolonged stable disease for >12 months. This suggests that the potential of targeting AR in both ER(-) and ER(+) breast cancers is not yet fully explored. The efficacy of antiandrogen therapy in

Final Report

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719 Laboratory Director: Bradly Clark, MD CLIA# 03D2082339 Page 3 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

clinical notes

rare breast cancer types, such as inflammatory breast cancer, is currently unknown. In ER(+) AR(-) breast cancer, there appears to be a functional loss of the androgen receptor suggesting there is improved therapeutic utility using a SERM rather than an AI. *** According to the referenced literature, at a threshold of \geq 10% nuclear expression, the androgen receptor is associated with response to AR inhibitors such as enzalutamide or bicalutamide. Although the current AR IHC at a 10% cutoff for total AR nuclear staining can identify responders, it should be noted that this threshold has been associated with only a modest positive predictive value (PPV) of 30% according to Kumar et al. (2017), which may restrict its clinical application. To develop additional information about its utility, please consider enrolling in the Paradigm Registry.

ARID1A; As one of the primary members of SWI/SNF chromatin remodeling complexes, ARID1A contains frequent loss-of-function mutations in many types of cancers. ARID1A mutations are among the most frequently mutated epigenetic regulator genes across human malignancies, with mutations particularly common in clear cell ovarian, endometrial, colorectal, stomach, and bladder cancers. In breast cancer, ARID1A has been characterized as a key tumor-suppressor gene. Emerging preclinical data suggest that loss-of-function mutations in the tumor suppressor gene ARID1A disrupt DNA mismatch repair (MMR) and thereby potentially improving outcomes in treatment scenarios involving PD-1-targeting immune checkpoint inhibitors.

ER +, HER2- Breast Cancer; Palbociclib, ribociclib and abemaciclib are indicated for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer in combination with an aromatase inhibitor as initial endocrine based therapy in postmenopausal women or in men, or in combination with fulvestrant in patients with disease progression following endocrine therapy.

MDM4 CNV gain, MDM4, a homolog of MDM2, is considered a key negative regulator of p53. Gene amplification of MDM4 has been identified in a variety of tumors and is considered to be potentially targetable. Emerging evidence suggests a role of MDM4 amplification in hyperprogression (HPD) after immunotherapy. Although the exact mechanism linking MDM2/4 amplification and HPD is unclear, MDM2/4 amplification may be a promising biomarker of HPD risk assessment and prognosis (Kato et al. 2018 PMID 28351930).

Microsatellite Instability Analysis [MSI] Result: Stable (MSS); Cancers are classified as either displaying high-frequency microsatellite instability (MSI-H), lowfrequency MSI (MSI-L), or microsatellite stability (MSS) depending on the number of microsatellite loci showing errors. Microsatellite stable cancers (MSS) generally show less immune cell infiltration compared with MSI-H cancers. The greatly increased number of mutation-associated neoantigens resulting from mismatch-repair deficiency appears to be a key mechanism in the observed responsiveness to anti–PD-1 agents such as pembrolizumab (Le et al. 2015; PMID: 26028255).

PD-L1 (22C3) TILs expression is determined by identifying the percentage of viable tumor cells showing partial or complete membrane staining at any intensity. In breast cancer, Programmed death-ligand 1 (PD-L1) expression on tumor-infiltrating immune cells appears to be the best predictor of response to atezolizumab + nab-paclitaxel in patients with untreated metastatic triple-negative breast cancer whose tumors express PD-L1 stained tumor-infiltrating immune cells [TILs] of any intensity covering \geq 1% of the tumor area (Schmid et al. 2018). The predictive value of the PD-L1 clone 22C3 for nivolumab, atezolizumab, avelumab or durvalumab is currently unclear. However, an exploratory post-hoc analysis was presented at the European Society of Medical Oncology (ESMO) Annual Meeting 2019 of the IMpassion130 phase III study. The HRs for PFS and OS in favor of atezolizumab plus nab-paclitaxel compared with placebo plus nab-paclitaxel were relatively similar between groups who were PD-L1-positive using Ventana PD-L1 SP142, Dako 22C3, and Ventana PD-L1 SP263 assays.

PD-L1 (22C3) Tumor expression is determined by identifying the percentage of viable tumor cells showing partial or complete membrane staining at any intensity. The scoring system divides the results into three groups: those with \geq 50% of tumor cells showing any level of positivity (high), those with <50% of tumor cells but \geq 1% of tumor cells positive (low), and those with <1% positive (negative). Per the medical literature, there is a strong positive association between PD-L1 expression and response to immune checkpoint inhibitors. However, patients with low(er) PD-L1 expression have also had meaningful responses and clinical benefit across multiple tumor types and histologies (Patel & Kurzrock 2015).

PIK3CA c.3140A>G p.H1047R; A mutation in the Kinase Domain (exon 20) of PIK3CA was detected (c.3140A>G p.H1047R). PIK3CA mutations identify patients who are less likely to benefit from anti-HER2 inhibition, especially trastuzumab, lapatinib alone or in combination. Results from the EMILIA Trial suggest that single-agent T-DM1 may be active in HER2-positive MBC with PIK3CA mutations, which is less sensitive to other standard HER2-directed therapies. Based on data from the phase III SOLAR-1 trial, alpelisib (Piqray) has been approved by the FDA for the treatment of postmenopausal women, and men, with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer following progression on or after an endocrine therapy. Alpelisib has also demonstrated a tolerable safety profile and encouraging preliminary activity in patients with PIK3CA-altered solid tumors, supporting the rationale for selective PI3Kα inhibition in combination with other agents for the treatment of PIK3CA-mutant tumors. However, the data related to efficacy of alpelisib in PIK3CA-altered cancers is largely based on hotspot mutations such as exon 7: C420R; exon 9: E542K; E545A, E545D, E545G, E545K, Q546E, Q546R; and exon 20: H1047L, H1047R, H1047Y). Additionally, numerous PI3K inhibitors have been developed and are in varying stages of clinical testing, with select trials displayed in the clinical trial appendix of this report.

HR+, HER2- Breast Cancers with PIK3CA mutations may derive greater benefit from letrozole than tamoxifen; The Breast International Group (BIG) 1-98 trial randomized 8010 postmenopausal patients with hormone receptorpositive, operable, invasive BC to monotherapy with letrozole, tamoxifen, or a sequential strategy for 5 years and found that patients with tumors harboring kinase or helical domain PIK3CA mutations derived significantly greater benefit from letrozole over tamoxifen than patients whose tumors did not (Luen et al. 2018).

TMB - Tumor Mutation Burden TMB is defined as the total number of DNA mutations per megabase in a tumor sequence. TMB appears to have an evolving role as a predictive marker for immunotherapy treatment in various cancers, including melanoma, lung, and bladder cancer [1]. The threshold for TMB has not been clearly defined, and there remains no consensus for the optimal quantitative or qualitative threshold by cancer type [2]. For the purpose of TMB stratification, PCDx adopted the high (\geq 10 mutations per megabase) and low (< 10 mutations per megabase) TMB cutoffs based on the retrospective analysis of TMB in the

Paradigm

Final Report

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719 Laboratory Director: Bradly Clark, MD CLIA# 03D2082339 Page 4 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

clinical notes

CheckMate 227 trial (Hellmann et al. 2018, PMID: 29658845). TMB may correlate with PFS but it is not prognostic for OS in lung cancer. TMB has not yet been investigated with respect to OS in prospective trials [3] (see also Ramalingam webcast at AACR 2018). Some tumors possess high TMB as a consequence of a defective mismatch repair of DNA [4] and tumors with high TMB are often mismatch repair deficient [5]. Additionally, there appears to be a correlation between smoking status and TMB. POLE mutations are also associated with TMB. Paradigm will continue to evaluate/monitor the evidence including a standardized/ consensus driven TMB [6] as a predictive and prognostic marker for immunotherapy treatment. To develop additional information about the utility of TMB, please consider enrolling in the Paradigm Registry.

[1] TMB is believed to be a surrogate marker for immunogenicity and the likelihood of clinical response or benefit from immunotherapy.

[2] While no clear threshold or consensus has been identified (high vs low). Positive results for immunotherapy benefit have been reported by various studies at 10-20 mutations per megabase.

[3] All patients with high TMB should be considered candidates for a trial of immunotherapy. Low/intermediate TMB does not rule out a response to immunotherapy, nor should it preclude the patient pursuing a clinical trial of immunotherapy.

[4] While defective MMR is clearly associated with TMB, not all MMRD tumors have elevated TMB, probably reflecting that loss of MMR proficiency is a recent or branching event in the tumor rather than a truncal or founding event.

[5] High TMB is also reported in some cancers with intact MMR, notably those with POLE mutations. These patients also appear to have robust responses to checkpoint immunotherapy.

[6] TMB in context: the presence of other immune checkpoints, including TIM3, LAG3, PD-L2, IDO, and the composition of the tumor microenvironment (MDSC, FOX3P+ TIL), B2M loss, and aberrations within particular intracellular pathways (i.e. PTEN loss, IFN gamma defects) are also known to play key roles in the resistance/response to immunotherapy.

TRKpan: IHC negative – VITRAKVI (larotrectinib) and ROZLYTREK (entrectinib) are indicated for the treatment of adult and pediatric patients with solid tumors that have a neurotrophic receptor tyrosine kinase (NTRK) gene fusion without a known acquired resistance mutation. Activating NTRK fusions are highly targetable and define certain tumors. However, with the exception of select tumor types, rearrangement of NTRK oncogenes is of such low prevalence (Amatu et al. 2016 PMID 27843590), that TRKpan IHC has emerged as a time- and tissue-efficient screen for NTRK fusions, particularly in driver-negative advanced malignancies. Immunohistochemical analysis for TRKpan confers several benefits such as quick turnaround time, limited material required, only transcribed and translated fusions are detected rather than all DNA-level rearrangements, high sensitivity and specificity, and lower cost. TRKpan IHC targets a conserved epitope in the kinase domain of all three TRK proteins and is a useful tool to detect expression of TRKA, B and C in solid tumors, because fusion of NTRK1-3 with various upstream partners leads to aberrant protein expression and unchecked proliferation. A TRKpan negative result by IHC indicates that the TRK signaling pathway is likely not constitutively activated and, therefore, no follow-up testing is necessary.

VEGFA CNV gain; Vascular endothelial growth factor-A (VEGFA) is a growth factor that promotes new blood vessel and endothelial cell growth. Increases in VEGFA copy number induce endothelial cell proliferation, promote cell migration, inhibit apoptosis and induce permeabilization of blood vessels. This gene is upregulated in many known tumors and its expression is correlated with tumor stage and progression. While VEGFA amplification may be a poor prognostic indicator for tumor-free survival, tumors with this amplification demonstrate sensitivity to treatment with the multi-kinase inhibitor sorafenib.

		clinical trials
in tumor type		
AR +	NCT01990209	Orteronel
Orteronel as Monotherapy in Pat	ients With Metastatic Breast Car	ncer (MBC) That Expresses the Androgen Receptor (AR)
AR +	NCT02605486	Palbociclib Bicalutamide
Palbociclib in Combination With	Bicalutamide for the Treatment	of AR(+) Metastatic Breast Cancer (MBC)
AR +, ER + and HER2 -	NCT02955394	Enzalutamide Fulvestrant
Preoperative Fulvestrant With or	Without Enzalutamide in ER+/H	er2- Breast Cancer
BRCA1 WT, BRCA2 WT a HER2 -	nd NCT02401347	PARP Inhibitor BMN-673
Phase II Talazoparib in BRCA1 +E	3RCA2 Wild-Type &Triple-Neg /	HER2-Negative Breast Cancer /SolidTumors
ER +	NCT01042379	AMG 386 Ganitumab MK-2206 T-DM1 Ganetespib ABT-888 Neratinib PLX3397 Pembrolizumab
I-SPY 2 TRIAL: Neoadjuvant and I	Personalized Adaptive Novel Ag	ents to Treat Breast Cancer
ER +	NCT02540330	Fulvestrant
A Pre-Surgical PK Study of IM and	d Intraductally Delivered Fulvest	rant
ER +	NCT02598557	Exemestane
Alternative Dosing of Exemestan	e Before Surgery in Treating Pos	stmenopausal Patients With Stage 0-II Estrogen Positive Breast Cancer
ER +	NCT02993159	Afimoxifene Placebo Tamoxifen
Testing an Active Form of Tamox	ifen (4-hydroxytamoxifen) Delive	ered Through the Breast Skin to Control Ductal Carcinoma in Situ (DCIS) of the Breast

Final Report 445 N 5th St., Phoenix, AZ 85004 1-844-232-4719 Laboratory Director: Bradly Clark, MD CLIA# 03D2082339 Page 5 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

		clinical trials
ER +	NCT03294694	Ribociclib PDR001 Fulvestrant
Ribociclib + PDR001 in Breast Canc	er and Ovarian Cancer	
ER +	NCT03330405	Avelumab Talazoparib Avelumab Talazoparib
Javelin Parp Medley: Avelumab Plus	s Talazoparib In Locally Advanced Or I	 Metastatic Solid Tumors
ER +	NCT03332797	GDC-9545 Palbociclib LHRH agonist
A Study of GDC-9545 Alone or in C Positive Breast Cancer	ombination With Palbociclib and/or Lu	uteinizing Hormone-Releasing Hormone (LHRH) Agonist in Locally Advanced or Metastatic Estrogen Receptor-
ER + Neoadiuvant Tamoxifen, Palbociclik	NCT03573648 Avelumab in Estrogen Receptor Pos	Avelumab Tamoxifen Palbociclib
		Mammaglabin A DNA Vaccina Apartrazala Latrazala Tamavifan Evamastana
ER + and HER2 -	NCT02204098	Goserelin
ER + and HER2 - Neoadjuvant Run-In Study With TAI	NCT02619669 <-228 Followed by Letrozole/TAK-228	TAK-228 (MLN0128) Letrozole in Women With High-Risk ER+/HER2- Breast Cancer
ER + and HER2 -	NCT02626507	Gedatolisib Faslodex Palbociclib Zoladex
Phase I Study of Combination of Ge	edatolisib With Palbociclib and Faslode	ex in Patients With ER+/HER2- Breast Cancer
ER + and HER2 - A Study To Assess The Tolerability /	NCT02684032 And Clinical Activity Of Gedatolisib In	Gedatolisib Palbociclib Letrozole Fulvestrant Combination With Palbociclib/Letrozole Or Palbociclib/Fulvestrant In Women With Metastatic Breast Cancer
ER + and HER2 -	NCT02738866	Palbociclib Fulvestrant
Palbociclib With Fulvestrant for Met	astatic Breast Cancer After Treatment	With Palbociclib and an Aromatase Inhibitor
ER + and HER2 -	NCT02752685	Pembrolizumab Nab-Paclitaxel
Phase II Study of Pembrolizumab ar	nd Nab-paclitaxel in HER-2 Negative N	letastatic Breast Cancer
ER + and HER2 -	NCT02764541	Letrozole Tamoxifen Palbociclib Endocrine Therapy
Palbociclib and Endocrine Therapy	for LObular Breast Cancer Preoperativ	e Study (PELOPS)
ER + and HER2 - Pembrolizumab Letrozole, and Palk	NCT02778685	Letrozole Palbociclib Pembrolizumab atients With Newly Diagnosed Metastatic Stage IV Estrogen Receptor Positive Breast Cancer
FR + and HFR? -		Fulvestrant with Enzalutamide
Fulvestrant Plus Enzalutamide in ER	+/Her2- Advanced Breast Cancer	
FR + and HFR2 -	NCT03250676	H3B-6545
Trial of H3B-6545, in Women With L	Locally Advanced or Metastatic Estrog	en Receptor-positive, HER2 Negative Breast Cancer
ER + and HFR2 -	NCT03366844	Pembrolizumab Radiation
Breast Cancer Study of Preoperative	e Pembrolizumab + Radiation	
ER + and HER2 -	NCT03439735	Aromatase Inhibitor and Palbociclib
Determinants of Resistance to First-	line Therapy With an AI and Palbocicli	b for HR+ MBC
ER + and HER2 -	NCT03455270	G1T48
G1T48, an Oral SERD, in ER-Positive	e, HER2-Negative Advanced Breast Ca	ancer
ER + and HER2 -	NCT03471663	D-0502 palbociclib
A First-in-Human Study of D-0502 A	lone and in Combination With Palboc	iclib in Women With Advanced or Metastatic ER-Positive and HER2-Negative Breast Cancer
ER + and HER2 -	NCT03560531	ZN-c5 Palbociclib
A Study of ZN-c5 in Subjects With E	Breast Cancer	
ER + and HER2 -	NCT03566485	Atezolizumab Cobimetinib Idasanutlin
Atezolizumab and Cobimetinib or lo	dasanutlin in Participants With Stage IV	/ or Unresectable Recurrent Estrogen Receptor Positive Breast Cancer
ER + and HER2 -	NCT03584009	Venetoclax Fulvestrant
A Phase II Study Comparing The Eff Cancer Who Experienced Disease R	ficacy Of Venetoclax + Fulvestrant Vs. Recurrence Or Progression During Or A	Fulvestrant In Women With Estrogen Receptor-Positive, Her2-Negative Locally Advanced Or Metastatic Breast After CDK4/6 Inhibitor Therapy
ER + and HER2 -	NCT03628066	Letrozole Palbociclib Goserelin
Biological and Clinical Effects of Pal	bociclib With Ovarian Suppression and	d Letrozole in the Neoadjuvant Treatment of Breast Cancer
Paradigm ^{Fin}	al Report 445 N 5th St., Pho	Denix, AZ 85004 Laboratory Director: CLIA# 03D2082339 Continue

1-844-232-4719

Bradly Clark, MD

Page 6 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

		clinical trials
ER + and HER2 - The XENERA™ 1 Study Tests Xentuz Spread	NCT03659136 zumab in Combination With Everolimu	Xentuzumab Placebo Everolimus Exemestane us and Exemestane in Women With Hormone Receptor Positive and HER2-negative Breast Cancer That Has
ER + and HER2 - Radiation Therapy, Palbociclib, and I	NCT03691493 Hormone Therapy in Treating Breast (Anastrozole Exemestane Fulvestrant Letrozole Palbociclib Tamoxifen Cancer Patients With Bone Metastasis
ER + and HER2 - A Trial to Evaluate Efficacy and Safet	NCT03701334 ty of Ribociclib With Endocrine Therat	Ribociclib Endocrine Therapy ov as Adjuvant Treatment in Patients With HR+/HER2- Early Breast Cancer
ER + and HER2 -	NCT03725059	Pembrolizumab Placebo Paclitaxel Doxorubicin Epirubicin Cyclophosphamide Endocrine therapy
Study of Pembrolizumab (MK-3475) Positive, Human Epidermal Growth F	Versus Placebo in Combination With I Factor Receptor 2-Negative (ER+/HER	Neoadjuvant Chemotherapy & Adjuvant Endocrine Therapy in the Treatment of Early-Stage Estrogen Receptor- 2-) Breast Cancer (MK-3475-756/KEYNOTE-756)
ER + and HER2 -	NCT03742986	Nivolumab Doxorubicin +Cyclophosphamide Nivolumab + Docetaxel +Trastuzumab +Pertuzumab Doxorubicin+Cyclophosphamide
Trial of Nivolumab With Chemothera	apy as Neoadjuvant Treatment in Infla	mmatory Breast Cancer (IBC)
ER + and HER2 - Letrozole in Post-Menopausal Patien	NCT03747042 hts With Operable Hormone-Sensitive	Letrozole Breast Cancer
ER + and HER2 -	NCT03803761	Copanlisib Fulvestrant
Study of a New Drug Combination, (Copanlisib and Fulvestrant, in Postme	nopausal Women With Advanced Breast Cancer
ER + and HER2 - Study of 2 Ribociclib Doses in Comb	NCT03822468 vination With Aromatase Inhibitors in V	Ribociclib Letrozole or Anastrozole Goserelin Vomen With HR+, HER2- Advanced Breast Cancer
ER + and HER2 - WI231696: ASPIRE Bosutinib	NCT03854903	Palbociclib Bosutinib Fulvestrant
ER + and HER2 - Aromatase Inhibitor and Durvalumak	NCT03874325 o in Postmenopausal Breast Cancer	DurvalumablAnastrozolelLetrozole lExemestane
ER + and HER2 - Study of IMMU-132 in HR+/HER2- M	NCT03901339 IBC (TROPICS-02)	Sacituzumab GovitecanlEribulinlCapecitabinelGemcitabinelVinorelbine
ER + and HER2 - A Window of Opportunity Study of F Human Epidermal Receptor 2 Negat	NCT03906669 Pre-operative Endocrine Therapy With tive (HER2-) Breast Cancer.	LetrozolelLetrozole and PrometriumlTamoxifen and Prometrium and Without Prometrium in Postmenopausal Women With Early Stage Breast Hormone Receptor Positive (HR+)
ER + and HER2 -	NCT03939897	AbemacicliblCopanlisiblFulvestrant
Testing the Addition of Copanlisib to	o Usual Treatment (Fulvestrant and Ab	emaciclib) in Metastatic Breast Cancer - Dose-Finding Study
ER +, HER2 - and PIK3CA MUT	NCT01723774	PD0332991 Anastrozole
PD 0332991 and Anastrozole for Sta	ge 2 or 3 Estrogen Receptor Positive	and HER2 Negative Breast Cancer
ER +, PR + and HER2 - Tesetaxel Plus Reduced Dose of Cap	NCT03326674 pecitabine vs. Capecitabine in HER2 N	Tesetaxel + Capecitabine Capecitabine legative, HR Positive, LA/MBC
FR + PR + and HFR2 -	NCT03519178	PE-06873600
A Safety, Pharmacokinetic, Pharmaco	odynamic and Anti-Tumor Study of PF	-06873600 as a Single Agent and in Combination With Endocrine Therapy
HER2 -	NCT01042379	AMG 386 Ganitumab MK-2206 T-DM1 Ganetespib ABT-888 Neratinib PLX3397 Pembrolizumab
I-SPY 2 TRIAL: Neoadjuvant and Pers	sonalized Adaptive Novel Agents to T	reat Breast Cancer
HER2 - Paclitaxel and Cyclophosphamide W	NCT01750073 /ith or Without Trastuzumab Before Su	Paclitaxel Cyclophosphamide Trastuzumab Doxorubicin Irgery in Treating Patients With Previously Untreated Breast Cancer
HER2 -	NCT02157051	CD105/Yb-1/SOX2/CDH3/MDM2 multiplasmid vaccine
Vaccine Therapy in Treating Patients	With HER2-Negative Stage III-IV Brea	ast Cancer
HER2 - Neoadjuvant Pembrolizumab + Deci	NCT02957968 itabine Followed by Std Neoadj Cherr	Doxorubicin Cyclophosphamide Paclitaxel Carboplatin no for Locally Advanced HER2- Breast Ca

Laboratory Director: Bradly Clark, MD CLIA# 03D2082339 Page 7 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

		clinical trials
HER2 - Ribociclib + PDR001 in Breast Cance	NCT03294694 er and Ovarian Cancer	Ribociclib PDR001 Fulvestrant
HER2 -	NCT03554044	Anastrozole Exemestane Fulvestrant Letrozole Paclitaxel Talimogene Laherparepvec Tamoxifen
Talimogene Laherparepvec With Pa	clitaxel or Endocrine Therapy in Treat	ing Participants With Metastatic, Unresectable, or Recurrent HER2- Negative Breast Cancer
HER2 -	NCT03734029	Trastuzumab deruxtecan (DS-8201a) Capecitabine Eribulin Gemcitabine Paclitaxel Nab-paclitaxel
Trastuzumab Deruxtecan (DS-8201a)) Versus Investigator's Choice for HEF	82-low Breast Cancer That Has Spread or Cannot be Surgically Removed [DESTINY-Breast04]
HER2 -, ER + and PR +	NCT02520063	Letrozole Everolimus TRC105
Preoperative Combination of Letroz	ole, Everolimus, and TRC105 in Postr	nenopausal Hormone-Receptor Positive and Her2 Negative Breast Cancer
PIK3CA MUT A Study of Ipatasertib in Combination Hormone Receptor-Positive, HER2-N	NCT03337724 on With Paclitaxel as a Treatment for Negative Breast Cancer	Ipatasertib Paclitaxel Placebo Participants With PIK3CA/AKT1/PTEN-Altered, Locally Advanced or Metastatic, Triple-Negative Breast Cancer or
PIK3CA MUT, ER + and HER2 -	NCT02738866	Palbociclib Fulvestrant
Palbociclib With Fulvestrant for Meta	astatic Breast Cancer After Treatment	With Palbociclib and an Aromatase Inhibitor
PR +	NCT01042379	AMG 386 Ganitumab MK-2206 T-DM1 Ganetespib ABT-888 Neratinib PLX3397 Pembrolizumab
I-SPY 2 TRIAL: Neoadjuvant and Per	sonalized Adaptive Novel Agents to	Treat Breast Cancer
PR + Javelin Parp Medley: Avelumab Plus	NCT03330405 Talazoparib In Locally Advanced Or	Avelumab Talazoparib Avelumab Talazoparib Metastatic Solid Tumors
PR + and HER2 -	NCT02738866	Palbociclib Fulvestrant
Palbociclib With Fulvestrant for Meta	astatic Breast Cancer After Treatment	With Palbociclib and an Aromatase Inhibitor
PR + and HER2 - Phase II Study of Pembrolizumab an	NCT02752685 d Nab-paclitaxel in HER-2 Negative M	Pembrolizumab Nab-Paclitaxel //etastatic Breast Cancer
PR + and HER2 - Palbociclib and Endocrine Therapy f	NCT02764541 or LObular Breast Cancer Preoperativ	Letrozole Tamoxifen Palbociclib Endocrine Therapy re Study (PELOPS)
PR + and HER2 -	NCT03//39735	Aromatase Inhibitor and Palbociclib
Determinants of Resistance to First-I	ine Therapy With an AI and Palbocicl	ib for HR+ MBC
PR + and HER2 - The XENERA™ 1 Study Tests Xentu: Spread	NCT03659136 zumab in Combination With Everolim	Xentuzumab Placebo Everolimus Exemestane us and Exemestane in Women With Hormone Receptor Positive and HER2-negative Breast Cancer That Has
PR + and HER2 - The XENERA™ 1 Study Tests Xentu: Spread	NCT03659136 zumab in Combination With Everolim	Xentuzumab Placebo Everolimus Exemestane us and Exemestane in Women With Hormone Receptor Positive and HER2-negative Breast Cancer That Has
PR + and HER2 - Radiation Therapy, Palbociclib, and	NCT03691493 Hormone Therapy in Treating Breast	Anastrozole Exemestane Fulvestrant Letrozole Palbociclib Tamoxifen Cancer Patients With Bone Metastasis
PR + and HER2 - A Trial to Evaluate Efficacy and Safe	NCT03701334 ty of Ribociclib With Endocrine Thera	Ribociclib Endocrine Therapy py as Adjuvant Treatment in Patients With HR+/HER2- Early Breast Cancer
PR + and HER2 -	NCT03742986	Nivolumab Doxorubicin +Cyclophosphamide Nivolumab + Docetaxel +Trastuzumab +Pertuzumab Doxorubicin+Cyclophosphamide
Trial of Nivolumab With Chemothera	apy as Neoadjuvant Treatment in Infl	ammatory Breast Cancer (IBC)
PR + and HER2 - Study of 2 Ribociclib Doses in Comb	NCT03822468 bination With Aromatase Inhibitors in	Ribociclib Letrozole or Anastrozole Goserelin Women With HR+, HER2- Advanced Breast Cancer
PR + and HER2 - WI231696: ASPIRE Bosutinib	NCT03854903	Palbociclib Bosutinib Fulvestrant
PR + and HER2 - Study of IMMU-132 in HR+/HER2- N	NCT03901339 IBC (TROPICS-02)	Sacituzumab GovitecanlEribulinlCapecitabinelGemcitabinelVinorelbine

Final Report 445 N 5th St., Phoenix, AZ 85004 1-844-232-4719 Laboratory Director: Bradly Clark, MD CLIA# 03D2082339 Page 8 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

				C	linical trial	S			
PR + and A Window of Human Epide	HER2 - f Opportunity Stud ermal Receptor 2 N	NCT039 y of Pre-operative Jegative (HER2-) I	06669 Endocrine The Breast Cancer.	Letroz rapy With and With	colelLetrozole ar nout Prometrium in F	nd PrometriumIT Postmenopausal Wor	amoxifen and l nen With Early Stag	Prometrium ge Breast Hormone	Receptor Positive (HR+)
PR + and Testing the A multi-indic	HER2 - Addition of Copanl	NCT039 isib to Usual Trea	39897 tment (Fulvestra	Abem nt and Abemaciclik	acicliblCopanlis b) in Metastatic Brea	iblFulvestrant st Cancer - Dose-Fin	ding Study		
ARID1A N OLAParib CC	//UT Ombinations	NCT025	76444	AZD2	281 AZD5363	AZD1775 AZD	02014		
ARID1A N A Trial of Nir	IUT aparib in BAP1 and	NCT032 d Other DNA Dan	07347 nage Response (Nirapa DDR) Deficient Ne	arib oplasms (UF-STO-E	TI-001)			
ARID1A N A Study of Pl	IUT LX2853 in Advance	NCT032 ed Malignancies.	97424	PLX28	353				
ARID1A N M6620 (VX-9	/IUT 70) in Selected So	NCT037 lid Tumors	18091	M662	0				
ARID1A N Copanlisib, C	//UT Dlaparib, and Durv	NCT038 alumab in Treatin	42228 g Patients With	Copar Metastatic or Unre	nlisib Durvalum sectable Solid Tumo	nab I Olaparib ^{ors}			
MDM4 Ga A Phase 1 Mi	ain ultiple Ascending [NCT018 Dose Study of DS-	77382 -3032b, an Oral	DS-30 Murine Double Mi	32 nute 2 (MDM2) Inhil	pitor, in Subjects With	h Advanced Solid T	umors or Lymphon	nas
MSI Stabl	e Kinase Inhibition (C	NCT037 opanlisib) and Ar	11058 Iti-PD-1 Antibod	Copar y Nivolumab in Re	nlisib Nivoluma lapsed/Refractory So	ab olid Tumors With Exp	pansions in Mismato	ch-repair Proficient	(MSS) Colorectal Cancer
NRAS WT BRAF WT	, KRAS WT an	d NCT026	93535	Cetux	imab				
TAPUR: Testi PIK3CA N OLAParib CC	ing the Use of Foo 1UT Ombinations	d and Drug Admi	nistration (FDA)	Approved Drugs T AZD2	hat Target a Specifi 281 AZD5363	c Abnormality in a Tu AZD1775 AZD	umor Gene in Peop 02014	le With Advanced S	itage Cancer
PIK3CA M ARQ 751 as a	IUT a Single Agent or i	NCT027 n Combination W	61694 'ith Other Anti-C	ARQ 7 ancer Agents, in S	751 olid Tumors With PI	K3CA / AKT / PTEN I	Mutations		
PIK3CA M Copanlisib, C	IUT Dlaparib, and Durv	NCT038 alumab in Treatin	42228 g Patients With	Copar Metastatic or Unre	nlisib Durvalum sectable Solid Tumo	nab I Olaparib ^{ors}			
TP53 WT A Phase 1 Mi	ultiple Ascending [NCT018 Dose Study of DS-	77382 -3032b, an Oral	DS-30 Murine Double Mi	132 nute 2 (MDM2) Inhil	pitor, in Subjects With	n Advanced Solid T	umors or Lymphon	nas
TP53 WT This Study Ai	ims to Find the Bes	NCT034 st Dose of BI 9078	49381 328 in Patients V	BI 907 Vith Different Type	'828 s of Advanced Canc	er (Solid Tumors)			
TP53 WT A Pilot Trial c	of Atorvastatin in T	NCT035 umor Protein 53 (60882 p53) -Mutant an	Atorva d p53 Wild-Type N	astatin Nalignancies				
TP53 WT ALRN-6924 a	and Paclitaxel in Tr	NCT037 eating Patients W	25436 ith Advanced, N	MDM2 letastatic, or Unres	2/MDMX Inhibit sectable Solid Tumo	cor ALRN-6924 ^{rs}	Paclitaxel		
			g	enes nega	ative for sm	all variants	;		
ABCB1 AKT1 ARID1B BAP1 CBL	ABCC1 AKT2 ARID2 BARD1 CCND1	ABCC2 AKT3 ATM BCOR CCND2	ABL1 ALK ATR BNIP3 CCND3	ADAMTS1 AMER1 ATRX BRAF CCNE1	ADAMTS16 APC AURKA BRCA1 CD274	ADAMTS18 APLNR AURKB BRCA2 CDA	ADAMTS6 AR AXIN1 BRIP1 CDC73	ADAMTS9 ARAF AXL BTK CDH1	ADAMTSL1 AREG B2M BUB1B CDK4

Paradigm Final Report 445 N 1-844

CDKN2A

CYP1A1

EMSY

ERCC3

FANCE

FGFR1

CHEK1

EP300

ERRFI1

FANCF

FGFR2

CYP2D6

CDK6

CTLA4

ERCC1

FANCC

FGF3

DNMT3A

CDK12

EGFR

ERCC2

FGF4

FANCD2

CTNNB1

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719

CHEK2

CYP3A4

EPCAM

FANCG

FGFR3

ESR1

CHFR

CYP19A1

EPHA5

FANCM

FGFR4

ESR2

Laboratory Director: Bradly Clark, MD

CHKA

EPHA7

EWSR1

FAT1

FLT3

CYSLTR2

Director: CLIA# 03D2082339 , MD Page 9 of 13

CIC

dCK

ERBB2

EZH2

FLT4

FBXW7

⁹ Continued

CSF1R

DICER1

ERBB4

FANCA

FGD4

FUBP1

CREBBP

DDR2

ERBB3

FAM175A

FCGR2A

FOXL2

Final Report Date 1/15/2020

Breast Cancer - Invasive

			g	enes neg	ative for sr	nall variant	S		
GATA3	GLI1	GNA11	GNAQ	GNAS	GSTP1	HDAC2	HGF	HNF1A	HRAS
HSD3B1	IDH1	IDH2	IGF1R	IKZF1	JAK1	JAK2	JAK3	KDM5C	KDM6A
KDR	KEAP1	KIT	KRAS	MAF	MAP2K1	MAP2K2	MAP3K1	ΜΑΡΚΑΡΚ5	MAPK1
MAPK3	MDM2	MDM4	MED12	MEN1	MET	MGMT	MLH1	MRE11A	MSH2
MSH6	MTHFR	MTOR	MUTYH	MYC	MYCN	MYOD1	NBN	NF1	NF2
NFE2L2	NOTCH1	NOTCH2	NOTCH3	NPM1	NRAS	NTRK1	NTRK2	NTRK3	PALB2
PBRM1	PDCD1LG2	PDGFRA	PDGFRB	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PLCB4	PLCG1
PMS2	POLD1	POLE	PPP2R1A	PTCH1	PTEN	PTPN11	RAD50	RAD51C	RAD51D
RAF1	RB1	RBM10	RECQL	RET	RHEB	RICTOR	RIT1	RNF43	ROS1
RPTOR	RRM1	SDHB	SDHC	SETD2	SF3B1	SMAD2	SMAD4	SMARCA4	SMARCB1
SMO	SOCS1	SPOP	STAG2	STAT3	STK11	SUFU	TERT-p	TGFBR2	TNFAIP3
TOP2A	TP53	TYMS	TSC1	TSC2	TSHR	VEGFA	VHL .	WT1	YES1
XRCC1									

		genes	negative	e for copy	number va	riants (amp	olifications	;)	
ABCB1	ABCC1	ABCC2	ABL1	ADAMTS1	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9	ADAMTSL1
AKT1	AKT2	AKT3	ALK	AMER1	APC	APLNR	AR	ARAF	AREG
ARID1A	ARID1B	ARID2	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL
B2M	BAP1	BARD1	BCOR	BNIP3	BRAF	BRCA1	BRCA2	BRIP1	BTK
BUB1B	CBL	CCND1	CCND2	CCND3	CCNE1	CD274	CDA	CDC73	CDH1
CDK4	CDK6	CDK12	CDKN2A	CHEK1	CHEK2	CHFR	СНКА	CIC	CREBBP
CSF1R	CTLA4	CTNNB1	CYP1A1	CYP2D6	CYP3A4	CYP19A1	CYSLTR2	dCK	DDR2
DICER1	DNMT3A	EGFR	EMSY	EP300	EPCAM	EPHA5	EPHA7	ERBB2	ERBB3
ERBB4	ERCC1	ERCC2	ERCC3	ERRFI1	ESR1	ESR2	EWSR1	EZH2	FAM175A
FANCA	FANCC	FANCD2	FANCE	FANCF	FANCG	FANCM	FAT1	FBXW7	FCGR2A
FGD4	FGF3	FGF4	FGFR1	FGFR2	FGFR3	FGFR4	FLT3	FLT4	FOXL2
FUBP1	GATA3	GLI1	GNA11	GNAQ	GNAS	GSTP1	HDAC2	HGF	HNF1A
HRAS	HSD3B1	IDH1	IDH2	IGF1R	IKZF1	JAK1	JAK2	JAK3	KDM5C
KDM6A	KDR	KEAP1	KIT	KRAS	MAF	MAP2K1	MAP2K2	MAP3K1	ΜΑΡΚΑΡΚ5
MAPK1	MAPK3	MDM2	MED12	MEN1	MET	MGMT	MLH1	MRE11A	MSH2
MSH6	MTHFR	MTOR	MUTYH	MYC	MYCN	MYOD1	NBN	NF1	NF2
NFE2L2	NOTCH1	NOTCH2	NOTCH3	NPM1	NRAS	NTRK1	NTRK2	NTRK3	PALB2
PBRM1	PDCD1LG2	PDGFRA	PDGFRB	ΡΙΚ3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PLCB4
PLCG1	PMS2	POLD1	POLE	PPP2R1A	PTCH1	PTEN	PTPN11	RAD50	RAD51C
RAD51D	RAF1	RB1	RBM10	RECQL	RET	RHEB	RICTOR	RIT1	RNF43
ROS1	RPTOR	RRM1	SDHB	SDHC	SETD2	SF3B1	SMAD2	SMAD4	SMARCA4
SMARCB1	SMO	SOCS1	SPOP	STAG2	STAT3	STK11	SUFU	TERT-p	TGFBR2
TNFAIP3	TOP2A	TP53	TYMS	TSC1	TSC2	TSHR	VHL	WT1	YES1
XRCC1									

references

- 1. Bartlett, J. M. S., Brookes, C. L., Robson, T., Van de Velde, C. J. H., Billingham, L. J., Campbell, F. M., Grant, M., et al. (2011). Estrogen receptor and progesterone receptor as predictive biomarkers of response to endocrine therapy: a prospectively powered pathology study in the Tamoxifen and Exemestane Adjuvant Multinational trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 29(12), 1531-8.
- 3. Buchanan, G., Birrell, S. N., Peters, A. a, Bianco-Miotto, T., Ramsay, K., Cops, 4. Buzdar, A, Douma, J., Davidson, N., Elledge, R., Morgan, M., Smith, R., ... E. J., ... Tilley, W. D. (2005). Decreased androgen receptor levels and receptor function in breast cancer contribute to the failure of response to medroxyprogesterone acetate. Cancer research, 65(18), 8487-96.
- 2. Betof, A.S., Rabbani, Z. N., Hardee, M. E., Kim, S. J., Broadwater, G., Bentley, R. C., Snyder, S. A., et al. (2012). Carbonic anhydrase IX is a predictive marker of doxorubicin resistance in early-stage breast cancer independent of HER2 and TOP2A amplification. British journal of cancer, 106(5), 916-22.
 - Brady, C. (2001). Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 19(14), 3357-66.

Final Report

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719

Laboratory Director: Bradly Clark, MD

CLIA# 03D2082339 Page 10 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

references

- 5. Carlson, R. W., O'Neill, A., Vidaurre, T., Gomez, H. L., Badve, S. S., & Sledge, 6. Davies, C., Godwin, J., Gray, R., Clarke, M., Cutter, D., Darby, S., McGale, P., G. W. (2012). A randomized trial of combination anastrozole plus gefitinib and of combination fulvestrant plus gefitinib in the treatment of postmenopausal women with hormone receptor positive metastatic breast cancer. Breast cancer research and treatment, 133(3), 1049-56.
- 7. De Roock, W., De Vriendt, V., Normanno, N., Ciardiello, F., & Tejpar, S. (2011). KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. The lancet oncology, 12(6), 594-603.
- 9. Dickler, M. N., Tolaney, S., Rugo, H. S., Cortés, J., Dieras, V., Patt, D. A., ... Baselga, J. (2017). MONARCH 1, a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2metastatic breast cancer. Clinical Cancer Research, clincanres.0754.2017.
- 11. Efstathiou, E., Titus, M., Tsavachidou, D., Tzelepi, V., Wen, S., Hoang, A., ... Logothetis, C. J. (2012). Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 30(6), 637-43.
- 13.El Sheikh, S. S., Romanska, H. M., Abel, P., Domin, J., & Lalani, E. (2008). Predictive value of PTEN and AR coexpression of sustained responsiveness to hormonal therapy in prostate cancer--a pilot study. Neoplasia (New York, N.Y.), 10(9), 949-53.
- 15.Gamucci, T., Michelotti, A., Pizzuti, L., Mentuccia, L., Landucci, E., Sperduti, I., 16.Generali, D., Fox, S. B., Berruti, A., Brizzi, M. P., Campo, L., Bonardi, S., ... Vici, P. (2014). Eribulin mesylate in pretreated breast cancer patients: A multicenter retrospective observational study. Journal of Cancer, 5(5), 320-327.
- 17.Gill, P. G., Gebski, V., Snyder, R., Burns, I., Levi, J., Byrne, M., & Coates, A. (1993). Randomized comparison of the effects of tamoxifen, megestrol acetate, or tamoxifen plus megestrol acetate on treatment response and survival in patients with metastatic breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO, 4(9), 741-4.
- 19.Guedj, N., Bretagnol, F., Rautou, P.-E., Deschamps, L., Cazals-Hatem, D., Bedossa, P., ... Couvelard, A. (2011). Predictors of tumor response after preoperative chemoradiotherapy for rectal adenocarcinomas. Human pathology, 42(11), 1702-9.
- 21.Hortobagyi, G. N., Stemmer, S. M., Burris, H. A., Yap, Y.-S., Sonke, G. S., Paluch-Shimon, S., ... O'Shaughnessy, J. (2016). Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. The New England Journal of Medicine, 375(18), 1738-1748.
- 23. Jonat, W., Gnant, M., Boccardo, F., Kaufmann, M., Rubagotti, A., Zuna, I., ... Jakesz, R. (2006). Effectiveness of switching from adjuvant tamoxifen to anastrozole in postmenopausal women with hormone-sensitive early-stage breast cancer: a meta-analysis. The Lancet Oncology, 7(12), 991-6.
- (2011). Thymidylate synthase and thymidine phosphorylase as predictive markers of capecitabine monotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer. Cancer chemotherapy and pharmacology, 68(3), 743-51.

et al. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378(9793), 771-84.

- 8. Di Leo, A., Jerusalem, G., Petruzelka, L., Torres, R., Bondarenko, I. N., Khasanov, R., Verhoeven, D., et al. (2010). Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28(30), 4594-600.
- 10.Dowsett, M., Cuzick, J., Ingle, J., Coates, A., Forbes, J., Bliss, J., ... Peto, R. (2010). Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(3), 509-18.
- 12.Efstathiou, E., Titus, M., Wen, S., Hoang, A., Karlou, M., Ashe, R., ... Logothetis, C. J. (2015). Molecular Characterization of Enzalutamide-treated Bone Metastatic Castration-resistant Prostate Cancer. European Urology, 67(1), 53-60.
- 14.Fallowfield, L. J., Kilburn, L. S., Langridge, C., Snowdon, C. F., Bliss, J. M., & Coombes, R. C. (2012). Long-term assessment of quality of life in the Intergroup Exemestane Study: 5 years post-randomisation. British journal of cancer, 106(6), 1062-7.
- Wigfield, S. M., et al. (2006). Role of carbonic anhydrase IX expression in prediction of the efficacy and outcome of primary epirubicin/tamoxifen therapy for breast cancer. Endocrine-related cancer, 13(3), 921-30.
- 18.Gucalp, a., Tolaney, S., Isakoff, S. J., Ingle, J. N., Liu, M. C., Carey, L. a., ... Traina, T. a. (2013). Phase II Trial of Bicalutamide in Patients with Androgen Receptor Positive, Hormone Receptor Negative Metastatic Breast Cancer. Clinical Cancer Research.
- 20.Hong, Y. S., Cho, H. J., Kim, S. Y., Jung, K. H., Park, J. W., Choi, H. S., Oh, J. H., et al. (2009). Carbonic anhydrase 9 is a predictive marker of survival benefit from lower dose of bevacizumab in patients with previously treated metastatic colorectal cancer. BMC cancer, 9, 246.
- 22.Horwitz, E., Stein, I., Andreozzi, M., Nemeth, J., Shoham, A., Pappo, O., ... Pikarsky, E. (2014). Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment. Cancer Discovery.
- 24. Juric, D., Janku, F., Rodón, J., Burris, H. A., Mayer, I. A., Schuler, M., ... Rugo, H. S. (2018). Alpelisib Plus Fulvestrant in PIK3CA-Altered and PIK3CA-Wild-Type Estrogen Receptor-Positive Advanced Breast Cancer: A Phase 1b Clinical Trial. JAMA Oncology, 5(2), e184475.
- 25.Lee, S. J., Choi, Y. La, Park, Y. H., Kim, S. T., Cho, E. Y., Ahn, J. S., & Im, Y.-H. 26.Lee-Kong, S. a, Ruby, J. a, Chessin, D. B., Pucciarelli, S., Shia, J., Riedel, E. R., ... Guillem, J. G. (2012). Hypoxia-related proteins in patients with rectal cancer undergoing neoadjuvant combined modality therapy. Diseases of the colon and rectum, 55(9), 990-5.

Final Report

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719

Laboratory Director: Bradly Clark, MD

CLIA# 03D2082339 Page 11 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

Ŭ					
		refere	ences		
27.Lim, S. M., Park, H. S., Kim, S B. C. (2016). Next-generation confer exceptional response	S., Kim, S., Ali, S. M., Greenk n sequencing reveals somati to everolimus. Oncotarget,	powe, J. R., Cho, c mutations that 7(9).	28.Litzow, M. R., Peethambaram, P. P M., Dispenzieri, a, Kaufmann, S hematopoietic SCT with escalating and carboplatin in patients with re peritoneal carcinoma. Bone marro	P., Safgren, S. L., Keeney, G. L., Ansell, S. . H. (2010). Phase I trial of autologous g doses of topotecan combined with CY lapsed or persistent ovarian or primary w transplantation, 45(3), 490–7.	
29.Mao, C., Yang, ZY., He, B (2012). Toremifene versus ta database of systematic revie	F., Liu, S., Zhou, JH., Luo, F moxifen for advanced breast ws (Online), 7(7), CD008926	RC., Chen, Q., et al. t cancer. Cochrane	30.Maughan, T. S., Meade, a M., Ada D., Kaplan, R. (2014). A feasibili phase II outcomes in advanced co for randomised controlled trials in Journal of Cancer, 110(9), 2178–86	ams, R. a, Richman, S. D., Butler, R., Fisher, ity study testing four hypotheses with lorectal cancer (MRC FOCUS3): a model the era of personalised medicine? British 6.	
31.Mehta, R. S., Barlow, W. E., Tirumali, N. R., Lew, D. L., et fulvestrant in metastatic brea 367(5), 435–44.	Albain, K. S., Vandenberg, T al. (2012). Combination ana ist cancer. The New Englanc	. a, Dakhil, S. R., Istrozole and I journal of medicine,	32.Naniwa, J., Kigawa, J., Kanamori, Y., Itamochi, H., Oishi, T., Shimada, M., Terakawa, N. (2007). Genetic diagnosis for chemosensitivity with drug- resistance genes in epithelial ovarian cancer. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society, 17(1), 76–82.		
33.Reardon, D., Desjardins, A., H., Sathornsumetee, S., McL chemotherapy with daily, ora malignant glioma: a phase II	Vredenburgh, J. J., Gururan endon, R. E., et al. (2009). N al etoposide plus bevacizum study. British journal of canc	gan, S., Sampson, J. letronomic ab for recurrent cer, 101(12), 1986–94.	34.Sartore-Bianchi, A., Martini, M., M. Artale, S., Bardelli, A. (2009). Pl associated with clinical resistance to Cancer research, 69(5), 1851–7.	olinari, F., Veronese, S., Nichelatti, M., K3CA mutations in colorectal cancer are to EGFR-targeted monoclonal antibodies.	
35.Sledge, G. W., Toi, M., Neve Cussac, A. (2017). MONARC Fulvestrant in Women With H Progressed While Receiving JCO.2017.73.758.	n, P., Sohn, J., Inoue, K., Pix H 2: Abemaciclib in Combin IR+/HER2– Advanced Breas Endocrine Therapy. Journal	rot, X., Llombart- ation With st Cancer Who Had of Clinical Oncology,	36.Spindler, KL. G., Pallisgaard, N., A. (2011). EGFR related mutationa of third-line cetuximab-irinotecan i cancer, 11(1), 107.	Lindebjerg, J., Frifeldt, S. K., & Jakobsen, Il status and association to clinical outcome in metastatic colorectal cancer. BMC	
37.Turner, NC M.D., Ph.D., Jun Sherene Loi, M.B., B.S., M.D Nadia Harbeck, M.D., Sibylle Zhang, Ph.D., Carla Gior, M. Positive Advanced Breast Ca	gsil Ro, M.D., Fabrice André ., Ph.D., Sunil Verma, M.D., e Loibl, M.D., Cynthia Huang . (2015). Palbociclib in Horm ncer, 1–11. doi:10.1056/NE	, M.D., Ph.D., Hiroji Iwata, M.D., Bartlett, M.D., Ke none-Receptor– JMoa1505270	38.Twelves, C., Cortes, J., Vahdat, L., Awada, A. (2014). Efficacy of eribu cancer: a pooled analysis of two p and Treatment, 148(3), 553–561.	, Olivo, M., He, Y., Kaufman, P. a., & Ilin in women with metastatic breast hase 3 studies. Breast Cancer Research	
39.Valachis, A., Mauri, D., Polyz Casazza, G. (2010). Fulvestra systematic review and meta- reviews in oncology/hemato	os, N. P., Mavroudis, D., Gent nt in the treatment of advan analysis of randomized contr logy, 73(3), 220–7.	orgoulias, V., & ced breast cancer: a rolled trials. Critical	40.Yang, LH., Tseng, HS., Lin, C., C DR. (2012). Survival benefit of tar progesterone receptor-positive low breast cancer, 15(3), 288–95.	Chen, LS., Chen, ST., Kuo, SJ., & Chen, moxifen in estrogen receptor-negative and w grade breast cancer patients. Journal of	
41.Zhou, WB., Ding, Q., Chen an effective and safe alternat for breast cancer: results of f treatment, 128(3), 625–31.	, L., Liu, XA., & Wang, S. (2 tive to tamoxifen in adjuvant our randomized trials. Breas	011). Toremifene is endocrine therapy t cancer research and	42.André, F., Ciruelos, E., Rubovszky, Juric, D. (2019). Alpelisib for PII advanced breast cancer. New Eng 1940.	, G., Campone, M., Loibl, S., Rugo, H. S., K3CA-mutated, hormone receptor-positive Jland Journal of Medicine, 380(20), 1929–	
43.Birrell, S. N., Roder, D. M., H Medroxyprogesterone aceta predictive value of androger Oncology : Official Journal c 13(7), 1572–1577.	lorsfall, D. J., Bentel, J. M., & te therapy in advanced brea receptor expression. Journ f the American Society of Cl	& Tilley, W. D. (1995). st cancer: the al of Clinical inical Oncology,	44.Luen, S. J., Asher, R., Lee, C. K., S. S. (2018). Association of Somatic E Postmenopausal, Hormone Recep Cancer. JAMA Oncology, 1335–13	avas, P., Kammler, R., Dell'Orto, P., Loi, Driver Alterations With Prognosis in tor–Positive, HER2 -Negative Early Breast 343.	
		IHC thre	esholds		
Biomarker	Negative	Not Signific	ant	Positive	
AR CA IX	$\leq 1 + \text{ or } \leq 10\%$	Not applicable	$x - 2 + /2 + /4 + \frac{1}{2} = 1 - 20^{0/2}$	\geq 1+ and \geq 10%	
PD-I 1 (22C.3) TII s	$\leq 1 \pm and \leq 10\%$	Not applicable	ル イナ/ リエ/サナ 111 1-27/0	22+ and 250%	
PD-L1 (22C3) Tumor	NA and 0%	Not applicable		\geq 1+ and \geq 50%	
TOP1	≤1+ and ≤10%	1+ in 11-100% c	or 2+/3+/4+ in 1-29%	≥2+ and ≥30%	

Paradigm

Final Report

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719 Laboratory Director: Bradly Clark, MD CLIA# 03D2082339 Page 12 of 13

Final Report Date 1/15/2020

Breast Cancer - Invasive

Biomarker

TP (TYMP) TRKpan

Negative ≤1+ and ≤10% ≤1+ or <10%

Not Significant 1+ in 11-100% or 2+/3+/4+ in 1-29% Not applicable

IHC thresholds

Positive

 \geq 2+ and \geq 30% \geq 1+ and \geq 10%

Performance								
Biomarker	Sensitivity	Specificity						
SNV, ins, del up to 40bp: ≥7.5% allele frequency ≥5.0% allele frequency Amplifications >5 fold Immunohistochemistry	>99% >97% >90% >94%	>99% >99% >99% >94%						

Limitations: Mutation calls may not be available from some regions due to pseudogenes or sequence context. Select IHCs may not be run if already performed within the last six months unless indicated in the notes section.

These tests were developed and the performance characteristics determined by Paradigm. NGS is performed by Paradigm on genomic DNA extracted from a formalin fixed paraffin-embedded tumor. Immunohistochemistry: Detection: IHC testing is done on formalin fixed, paraffin-embedded tissue (FFPE) utilizing the detection method of avidin-biotin free polymer is employed according to an optimized protocol. Scoring: HER2 testing meets the 2013 ASCO-CAP HER2 testing guidelines in breast cancer and results are reported using the ASCO/CAP scoring criteria as defined in the references below. For ER and PR, historical cutoffs for all non-breast tissues are followed. The following are antibody clones for each test: HER2 - EP3, ER - SP1, PR - PgR636. Note that these assays have not been validated on decalcified specimens. Controls: External controls are reviewed on all stains for appropriate positive and negative immunoreactivity and found to be satisfactory. If ROS1 by FISH is run, it is currently performed and interpreted by PhenoPath at 551 N. 34th St., Seattle, WA 98103. Fusion testing may be performed by PathGroup -Molecular Pathology Accessioning at 658 Grassmere Park, Suite 101, Nashville, TN 37211.

PCDx tests were developed and their performance characteristics determined by Paradigm Diagnostics, Inc. These tests have not been cleared or approved by the U.S. Food and Drug Administration. These tests are used for clinical purposes to guide patient care under the responsibility of the physician.

1. Wolff et al. (2013) J Clin Oncol. 31:3997-4013.

Hammond et al. (2010) Arch Pathol Lab Med. 134:48-72.
Tse, et al. (2011) J Clin Oncol. 29:4168-4174.

Clinical trials

The clinical trials information provided with the potential biomarker were compiled from www.clinicaltrials.gov a service provided by the U.S. NIH. The presentation is for informational purposes only and may not include all relevant trials. Health care providers should employ their clinical judgment in interpreting this information for individual patients. Specific enrollment criteria for each clinical trial should be carefully reviewed as additional inclusion criteria may apply and the biomarker may be associated with contraindications or exclusion criteria. The attending physician may need to contact the clinical trial administrator to ensure the patient is a possible candidate for admission to a particular clinical trial.

NCCN compendium

This report includes information about therapeutic agents that appear to be associated with clinical benefit based on NCCN Compendium guidelines, relevance of tumor lineage, level of publishing evidence and strength of biomarker expression, as available, as reviewed and assessed by Paradigm. The agents are not ranked in order of potential or predicted efficacy. The finding of a biomarker expression does not necessarily indicate effectiveness or lack thereof. The agents identified may or may not be suitable for use with a particular patient and the report does not guarantee or suggest that any particular agent will be effective with the treatment of any particular condition. **Reimbursement and acknowledgment**

Paradigm makes no representations or guarantee that an insurer, third party payor, or healthcare provider, whether private or governmental, will provide payment or reimbursement for the cost of tests performed. By accessing this report you agree that the analysis and associated report is owned by Paradigm and that you only have a limited right to use the information to potentially assist with the clinical treatment of the associated patient.

PCDx panel core components

Unless fewer tests are ordered on the requisition, every PCDx test run interrogates a wide panel of targets including the following clinically actionable genes for specific therapeutic interventions. PCDx is not intended to displace other specific standard of care tests for other gene targets. The BRCA1 and BRCA2 component is not intended to diagnose or identify a hereditary condition, and mutations detected may be somatic or germline in origin and are to be used primarily for individualized therapeutic purposes while appropriate genetic counseling and testing may be advisable.

Levels of evidence

U.S. Preventive Services Task Force Level of Evidence Rankings are summarized from: American journal of preventive medicine (2001), 20(3 Suppl), 21-35. Level of evidence doesn't necessarily indicate greater potential utility.

Level 1: Evidence from at least one properly designed randomized controlled trial. Level II-1: Evidence from well-designed controlled trials without randomization.

Level II-2: Evidence from well-designed cohort or case- control analytic studies, preferably from more than one center or research group.

Level II-3: Evidence from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

Level III: Opinions of respected authorities, based on clinical experience,

descriptive studies and case reports, or reports of expert committees.

Different Tumor Type (DTT): Alteration in biomarker present, however published evidence of biomarker utility was in a tumor type different from patient's tumor type.

No warranty or guarantee

This report does not make any promise or guarantee that a particular drug or treatment regimen will be effective or helpful in the treatment of disease in any patient. This report also makes no promise or guarantee that a drug with a potential clinical benefit will in fact provide a clinical benefit or that a drug with potential lack of clinical benefit will in fact provide no clinical benefit. Paradigm expressly disclaims and makes no representation or warranties whatsoever relating, directly or indirectly, to this review of evidence or identified scientific literature, the conclusions drawn from it or any of the information set forth in this report that is derived from such review, including information and conclusions relating to therapeutic agents that are included or omitted from this report.

This assay has not been validated on decalcified tissues. Results should be interpreted with caution given the possibility of false negative results on decalcified specimens.

Treatment decisions

Treatment Decisions Reside with Treating Physician and Patient. The selection of any treatment or potential treatment suggested by a biomarker resides within the discretion and judgment of the treating physician and patient. Decisions on patient care should be based on the independent medical judgment of the treating physician based upon all available clinical information, according to the applicable standard of care and should not be based solely on the tests and information contained in this report.

445 N 5th St., Phoenix, AZ 85004 1-844-232-4719