The Guardant360® Assay

ABOUT GUARDANT360

Guardant360 detects cell-free circulating tumor DNA (ctDNA) in blood specimens of advanced solid-tumor cancer patients and evaluates 73 genes. It tests four major classes of alterations relevant for treatment selection: point mutations, indels (insertions/deletions), copy number amplifications, and fusions/rearrangements.

Guardant Health's proprietary Digital Sequencing method optimizes next generation sequencing for accurate tumor variant detection at the low allele fractions present in cell-free DNA. High-efficiency capture enables single molecule detection, optimizing sensitivity, while unique digital barcoding and custom bioinformatics analysis optimizes specificity.1

INDICATIONS FOR USE TO GUIDE TREATMENT DECISIONS

Before first-line therapy

- > When molecular testing is incomplete, limited, or unobtainable
- > For example, when a patient is EGFR and ALK negative but lacks sufficient tissue for ROS1 or BRAF testing

At progression

- > To avoid an invasive biopsy when looking for a new genomic target
- > For patients whose tissue testing was incomplete at initial diagnosis

Not indicated for:

- > Hematologic malignancies
- > Early stage (stage I/II) cancers
- > When disease is stable or responding to therapy

TEST SPECIFICATIONS

Sample type and volume

Two 10 mL tubes of whole blood.

Storage and shipping conditions

Do not freeze or refrigerate. Ship same or next day at room temperature.

Test turnaround time

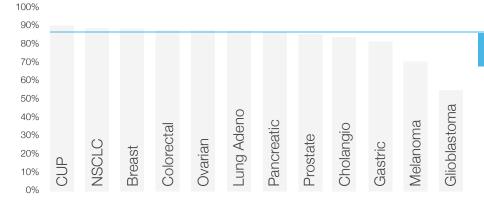
7 calendar days from sample receipt to results.

PERFORMANCE SPECIFICATIONS

Alteration Type	Reportable Range	Allelic Fraction/ Copy Number	Analytical Sensitivity	Analytical Specificity*	
SNVs	≥0.04%	>0.25%	100%	97%	
	≥0.04 /0	0.05-0.25%	64%	9170	
Indels	≥0.02%	>0.20%	100%	100%	
	20.02 /0	0.05-0.20%	68%	10070	
Fusions	≥0.04%	>0.20%	95%	100%	
	≥0.0470	0.05-0.20%	83%	10070	
CNAs	≥2.12 copies	2.24 copies**	95%	100%	

Based on cell-free DNA input of 30 ng in patient samples. Analytical sensitivity cited above are for targeted, clinically important regions. Sensitivity outside these regions or in highly repetitive sequence contexts may vary.

- * Per sample, over entire genomic reportable range of Guardant360 panel.
- ** Equivalent to 5% tumor fraction and 8 ERBB2 (HER2) gene copies in tumor. Copy number sensitivity may vary with other genes (2.24 - 2.76 copies).


INCLUDES ALL GUIDELINE-RECOMMENDED GENES FOR SOLID-TUMOR CANCERS

CRITICAL OR ALL EXONS* COMPLETELY SEQUENCED AND ALL FOUR MAJOR CLASSES OF ALTERATIONS

GENES	Point Mutation (73 Genes)	s (SNVs)	Indels (23 Genes)		Amplifications (18 Genes)		Fusions (6 Genes)			
AKT1	ALK	APC	AR	ARAF	ARID1A	ATM	APC	AR	BRAF	ALK
ATM	BRAF	BRCA1	BRCA2	CCND1	CCND2	ARID1A	BRCA1	CCND1	CCND2	FGFR2
CCNE1	CDH1	CDK4	CDK6	CDKN2A	CTNNB1	BRCA2	CDH1	CCNE1	CDK4	FGFR3
DDR2	EGFR	ERBB2 (HER2)	ESR1	EZH2	FBXW7	CDKN2A	EGFR	CDK6	EGFR	NTRK1
FGFR1	FGFR2	FGFR3	GATA3	GNA11	GNAQ	ERBB2	GATA3	ERBB2	FGFR1	RET
GNAS	HNF1A	HRAS	IDH1	IDH2	JAK2	KIT	MET	FGFR2	KIT	ROS1
JAK3	KIT	KRAS	MAP2K1/MEK1	MAP2K2/MEK2	MAPK1/ERK2	MLH1	MTOR	KRAS	MET	
MAPK3/ERK	MET	MLH1	MPL	MTOR	MYC	NF1	PDGFRA	MYC	PDGFRA	
NF1	NFE2L2	NOTCH1	NPM1	NRAS	NTRK1	PTEN	RB1	PIK3CA	RAF1	
NTRK3	PDGFRA	PIK3CA	PTEN	PTPN11	RAF1	SMAD4	STK11			
RB1	RET	RHEB	RHOA	RIT1	ROS1	TP53	TSC1			
SMAD4	SMO	STK11	TERT [†]	TP53	SC1	VHL				
VHL										

NSCLC guideline-recommended genes shown in bold / *Exons selected to maximize detection of known somatic mutations / † includes TERT promoter region

ctDNA DETECTION RATE BY CANCER TYPE WITH THE GUARDANT360 ASSAY

Average across cancer types: 86%

Tumors stabilized by therapy typically do not shed as much DNA into circulation, nor do tumors that are slow-growing.² In these clinical contexts, Guardant360 may not detect any tumor DNA in a patient sample.

Based on 24,000 consecutive clinical samples

COMPARISON OF PAIRED TISSUE AND GUARDANT360 RESULTS

92-100%

of Guardant360-detected NSCLC driver alterations were also found in tissue (positive predictive value)³

Positive Predictive Value (PPV)												
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100	%	
E	GFR L	.858R	(n=181)							98%	
E	GFR e	xon 1	9 dele	tions	(n=291)					98%	
E	GFR e	xon 2	0 inse	rtions	(n=16)						100%	
A	ALK, RET, ROS1 fusions (n=37)								92%*			
K	KRAS mutations (n=26)								100%			
B	BRAF V600E (n=5)								100%			
M	'ET ex	on 14	skipp	ing (n:	=3)						100%	

*3 of 3 Guardant360 ALK-fusion positive, tissue-negative (by FISH) cases were treated with and responded to crizotinib, suggesting tissue false-negatives.

REFERENCES: 1. Lanman et al. PloS One 2015 / 2. Holdenrieder et al. Clin Cancer Res 2004; Bettegowda, et al. Sci Transl Med 2014 / 3. Mack et al. J Thorac Oncol Suppl 2016 / 4. McCoach et al. Under Review 2018

